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So far in FoML

e Intro to ML and Probability refresher

e MLE, MAP, and fully Bayesian treatment

e Supervised learning
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Linear Regression with basis functions
Bias-Variance Decomposition
Decision Theory - three broad classification strategies

Neural Networks
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Unsupervised Learning
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For today

e Unsupervised Learning

o Introduction, contrasting with supervised, challenges

e Clustering

o K-Means

Some of the contents are taken from - Intro to Statistical Learning
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So far

e Supervised learning techniques

o p features X, X,, X, ... ><p measured on N observations
o Response Y also measured on these

o — goalisto predict Y using X,, X,, X, ... X
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Unsupervised learning

e Only have a set of features X, X,, X, ..... X
e Not interested in prediction (don't have an associated V)

e — goalisto discover ‘Interesting things" about the data
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Unsupervised learning

e ‘Interesting things" about the data

o Isthere an informative way to visualize the data?

o Can we discover ‘subgroups’ among the variables or samples?
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Unsupervised learning

e A diverse set of statistical techniques for answering such

questions

o Clustering

o Dimensionality Reduction - Principal Component Analysis (PCA)
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Unsupervised learning - challenges

e Much more challenging than supervised

e Exercise is ‘'subjective’
o No simple goal
o More like an ‘exploratory analysis’
o No universally accepted method for performance evaluation/validation (no true

answer as in the case of supervised setting)
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ML problems

Supervised Unsupervised
2
o
5 Classification Clustering
2
)
3
) : Dimensionality
= Regression Reduction
5
O
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Clustering
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Clustering

e Most widely used technique for exploratory data analysis
o Computational biologists cluster genes (on the basis of similarities in their
expression)
o Retailers cluster their customers (based on their profiles)
o Astronomers cluster stars (on the basis of spatial proximity)
o Textile manufacturers cluster customers into size groups (based on their body

type/measurements)
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Clustering

e Task of grouping a set of objects, such that

o Similar objects end up in the same group

o Dissimilar objects are separated into different groups
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Clustering

e Task of grouping a set of objects, such that

o Similar objects end up in the same group

o Dissimilar objects are separated into different groups
e Imprecise/ambiguous

o It's not clear how to come up with a more rigorous definition

o E.g, ‘'similarity’ is not transitive, where as ‘cluster sharing' is
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Clustering - Objectives

e Discover/Understand the underlying structure of the data

e What subpopulations exist in the data”?

o How many?

o What are their size?

o Do the elements in a subpopulation have common properties?
o Arethere outliers in the data?

o etc.
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Clustering - Taxonomy

1. Based on the overlap of clusters

a. Hard clustering - no overlap, complete/single assignment

b. Soft clustering - strength of association between element and cluster
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Clustering - Taxonomy

2. Based on methodology

ao. Flat versus Hierarchical - set of groups vs. taxonomy
b. Density based versus Distribution based - DBSCAN vs. GMMs
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Clustering

e Finding groups of objects such that

o the objects in a group will be similar (or related) to one another, and

o different from (or unrelated to) the objects in other groups
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Clustering

Intra-cluster similarity

® Cluster 3

Cluster 4
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Clustering methods

e K-Means
e Hierarchical
o GMM

e FEvaluation of clustering methods
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K-Means
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K-Means

e Simple and elegant
e Partitional clustering algorithm

e Non-overlaopping (hard) clustering
o Assigns each element to exactly one cluster

e Must specify the number of clusters - K
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K-Means

e Can be posed as an intuitive mathematical problem
e (. denotes the set of indices of the samples belonging to i-th

cluster

C]_UCQU...UCK — {1,,77,}

Cr NCp = 0 for all k& # k.

@ ) H
2r68ah R0ZBS dapd H0Y PSR I. I L
TRt enfe) Rerm fevmEe Data-driven Intelligence

Indian Institute of Technology Hyderabad & Learning Lab




K-Means

e |dea - good clustering results in small ‘within cluster variation’
W(C))
o  Within Cluster Sum of Squares (WCSS)

mlmmlze E W(Cr)
Ci,...
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K-Means

e Need to define - W(C))

e Most common - Squared Euclidean distance

fL’z‘j — Zy15)°

i D/zs

W(C) = L
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K-Means

e Combining the two equations

K
mmlmlze E W
Ci,.

k=

—

K p
L 1 2
minimize E — E (@35 — Tin5)

C1,m,Okc
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K-Means

K P
kZ_ C Z Z

C Ck
T t,t'eCy j=1

e This minimizes WCSS
o — Maximizes the ‘Between the Clusters Sum of Squares (BCSS)
o  Why?
o Total variance in the data is constant - minimizing the WCSS — maximizing BCSS

o Thisis related to the ‘law of variance’ in probability theory
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K-Means Algorithm

e Formally, the objective becomes

o Why/How?
E E Ty — Digr J = 2 E E :BU :1:'1.3J
1, €C =1 1€Cy, 7=1
0 _ 1 )
where LTkj = TCh ZiGCk Lij
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K-Means

e L|et'sfind an algorithm to achieve this

e How many different ways of assigning N samples to K clusters?
o KN
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K-Means Algorithm

1. Randomly assign a number, from 1 to K, to each of the observations.
These serve as initial cluster assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The
kth cluster centroid is the vector of the p feature means for the
observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest
(where closest is defined using Euclidean distance).

It is guaranteed to decrease the objective valuel
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K-Means Algorithm

e With runs, the clustering obtained will continually improve until no

change — local optimum is reached
o  Why?

p p
2 - 2 _
B 2 S =w =23 3w sy = T,
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K-Means - Visual Example

Data Step 1 Iteration 1, Step 2a
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K-Means - Visual Example

Iteration 1, Step 2a
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Iteration 1, Step 2b

Iteration 2, Step 2a

Final Results
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K-Means

e Because it finds a local minimum
o Solution depends on the initial clustering
e Run for multiple initializations — pick the best clustering

o One with minimal objective function
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K-Means

e Need to know the ‘K’ value
o Not simple
e Complexity

o NP-hard problem
o The heuristic algorithms have a complexity of O(NKdi)

m |- iterations until convergence
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Next class

e Other clustering

o Hierarchical
o GMM

e Dimensionality Reduction
o PCA
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Rough Work
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Rough Work
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