Foundations of Machine Learning Al2000 and Al5000

FoMI -25 Unsupervised Learning - Clustering

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - a. Linear Regression with basis functions
 - b. Bias-Variance Decomposition
 - c. Decision Theory three broad classification strategies
 - d. Neural Networks

Unsupervised Learning

For today

- Unsupervised Learning
 - o Introduction, contrasting with supervised, challenges
- Clustering
 - K-Means

Some of the contents are taken from - Intro to Statistical Learning

So far

- Supervised learning techniques
 - \circ p features $X_1, X_2, X_3, \dots, X_p$ measured on N observations
 - Response Y also measured on these
 - $\circ \to \text{goal is to predict Y using } X_1, X_2, X_3, \dots, X_p$

Unsupervised learning

- Only have a set of features $X_1, X_2, X_3, \dots, X_p$
- Not interested in prediction (don't have an associated Y)
- → goal is to discover "Interesting things" about the data

Unsupervised learning

- "Interesting things" about the data
 - Is there an informative way to visualize the data?
 - Can we discover 'subgroups' among the variables or samples?

Unsupervised learning

- A diverse set of statistical techniques for answering such questions
 - Clustering
 - o Dimensionality Reduction Principal Component Analysis (PCA)

Unsupervised learning - challenges

- Much more challenging than supervised
- Exercise is 'subjective'
 - No simple goal
 - More like an 'exploratory analysis'
 - No universally accepted method for performance evaluation/validation (no true answer as in the case of supervised setting)

ML problems

Discrete

Continuous

Supervised	Unsupervised
Classification	Clustering
Regression	Dimensionality Reduction

- Most widely used technique for exploratory data analysis
 - Computational biologists cluster genes (on the basis of similarities in their expression)
 - Retailers cluster their customers (based on their profiles)
 - Astronomers cluster stars (on the basis of spatial proximity)
 - Textile manufacturers cluster customers into size groups (based on their body type/measurements)

- Task of grouping a set of objects, such that
 - Similar objects end up in the same group
 - Dissimilar objects are separated into different groups

- Task of grouping a set of objects, such that
 - Similar objects end up in the same group
 - Dissimilar objects are separated into different groups
- Imprecise/ambiguous
 - o It's not clear how to come up with a more rigorous definition
 - o E.g., 'similarity' is not transitive, where as 'cluster sharing' is

Clustering - Objectives

- Discover/Understand the underlying structure of the data
- What subpopulations exist in the data?
 - o How many?
 - o What are their size?
 - Do the elements in a subpopulation have common properties?
 - o Are there outliers in the data?
 - o etc.

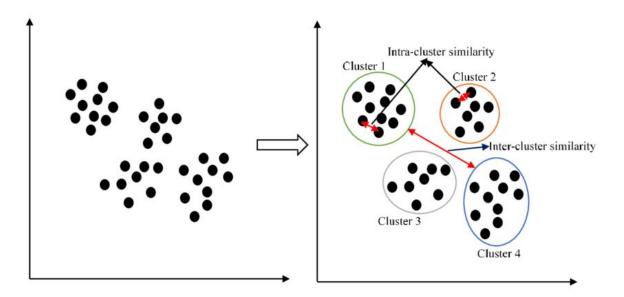
Clustering - Taxonomy

- 1. Based on the overlap of clusters
 - a. Hard clustering no overlap, complete/single assignment
 - b. Soft clustering strength of association between element and cluster

Clustering - Taxonomy

- 2. Based on methodology
 - a. Flat versus Hierarchical set of groups vs. taxonomy
 - b. Density based versus Distribution based DBSCAN vs. GMMs

- Finding groups of objects such that
 - the objects in a group will be similar (or related) to one another, and
 - o different from (or unrelated to) the objects in other groups



Clustering methods

- K-Means
- Hierarchical
- GMM
- Evaluation of clustering methods

- Simple and elegant
- Partitional clustering algorithm
- Non-overlapping (hard) clustering
 - Assigns each element to exactly one cluster
- Must specify the number of clusters K

- Can be posed as an intuitive mathematical problem
- C_i denotes the set of indices of the samples belonging to i-th cluster

$$C_1 \cup C_2 \cup \ldots \cup C_K = \{1, \ldots, n\}.$$

$$C_k \cap C_{k'} = \emptyset$$
 for all $k \neq k'$.

- Idea good clustering results in small 'within cluster variation'
 W(C_k)
 - Within Cluster Sum of Squares (WCSS)

$$\underset{C_1,\dots,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}.$$

- Need to define W(C_L)
- Most common Squared Euclidean distance

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

• Combining the two equations

$$\underset{C_1,\dots,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}.$$

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}.$$

$$\underset{C_1,...,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}.$$

This minimizes WCSS

- → Maximizes the 'Between the Clusters Sum of Squares (BCSS)'
- o Why?
- o Total variance in the data is constant minimizing the WCSS → maximizing BCSS
- This is related to the 'law of variance' in probability theory

K-Means Algorithm

- Formally, the objective becomes
 - o Why/How?

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^p (x_{ij} - \bar{x}_{kj})^2$$

where

$$\bar{x}_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{ij}$$

- Let's find an algorithm to achieve this
- How many different ways of assigning N samples to K clusters?
 - \circ K^N

K-Means Algorithm

- 1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster assignments for the observations.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of the p feature means for the observations in the kth cluster.
 - (b) Assign each observation to the cluster whose centroid is closest (where *closest* is defined using Euclidean distance).

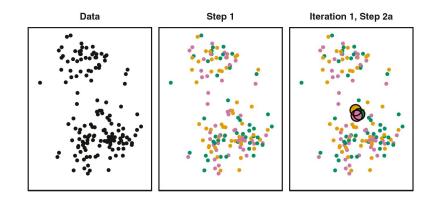
It is guaranteed to decrease the objective value!

K-Means Algorithm

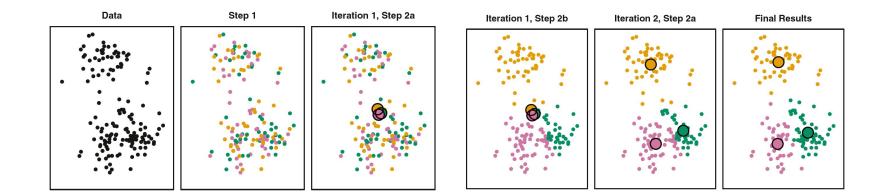
- With runs, the clustering obtained will continually improve until no change → local optimum is reached
 - Why?

$$\frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 = 2 \sum_{i \in C_k} \sum_{j=1}^p (x_{ij} - \bar{x}_{kj})^2 \quad \bar{x}_{kj} = \frac{1}{|C_k|} \sum_{i \in C_k} x_{ij}$$

K-Means - Visual Example



K-Means - Visual Example



- Because it finds a local minimum
 - Solution depends on the initial clustering
- Run for multiple initializations → pick the best clustering
 - One with minimal objective function

- Need to know the 'K' value
 - Not simple
- Complexity
 - NP-hard problem
 - The heuristic algorithms have a complexity of O(NKdi)
 - i iterations until convergence

Next class

- Other clustering
 - Hierarchical
 - o GMM
- Dimensionality Reduction
 - o PCA

Rough Work

Rough Work

